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The Ground State Energy of a Dilute
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The ground state energy per particle of a dilute, homogeneous, two-dimensional
Bose gas, in the thermodynamic limit is shown rigorously to be E0 �N=(2?�2\�m)
|ln(\a2)| &1, to leading order, with a relative error at most O( |ln(\a2)| &1�5). Here
N is the number of particles, \=N�V is the particle density and a is the scatter-
ing length of the two-body potential. We assume that the two-body potential is
short range and nonnegative. The amusing feature of this result is that, in con-
trast to the three-dimensional case, the energy, E0 is not simply N(N&1)�2
times the energy of two particles in a large box of volume (area, really) V. It is
much larger.

KEY WORDS: Bose gas; two-dimensions; low density; scattering length;
ground state energy.

Dedicated to the memory of J. M. Luttinger

1. INTRODUCTION

An ancient problem, going back to the 1950's, is the calculation of the
ground state energy of a dilute Bose gas in the thermodynamic limit. The
particles are assumed to interact only with a two-body potential and are
enclosed in a box of side length L. A formula was derived for the energy
E0(N, L) in three dimensions for a two-body potential v with scattering
length a (see Appendix) and fixed particle density \=N�V, (N=particle
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number and V=volume=L3 in three dimensions). In the thermodynamic
limit, the energy�particle is

e(\)# lim
N � �

E0(N, \&1�3N 1�3)�N&4?+\a (1.1)

to lowest order in \. Here, +=�2�2m with m the mass of a particle.
Our goal here is to derive the analogous low density formula for a

two-dimensional Bose gas.
There were several approaches in the 50's and 60's to the derivation of

the three-dimensional formula (1.1), but none of them were rigorous.
Recently we were able to give a rigorous derivation of (1.1) and we refer
the reader to ref. 1 for a physically motivated discussion of the essential dif-
ficulty in proving (1.1), which, basically, is the fact that at low density the
mean interparticle spacing is much smaller than the mean de Broglie
wavelength of the particles. Thus, Bose particles cannot be thought of as
localized. Furthermore, in ref. 1, we explain rather carefully why the usual
expression ``perturbation theory'' is not appropriate for (1.1)��especially in
the hard core case. Indeed, Bogolubov's 1947 ``perturbation theory(2)''
yields an estimate, which is incorrect for the low density limit:

e(\)& 1
2\ |

R 3
v (1.2)

It was only with a leap of faith that Bogolubov and Landau recognized
that � v is the first Born approximation to 8?+a and thus were able to derive
(1.1). Obviously this cannot be called perturbation theory. Moreover,
depending on the nature of v, it is sometimes the potential energy and
sometimes the kinetic energy that is the dominating quantity; for example,
in the hard core case the kinetic energy is the perturbation, rather than the
potential energy, as the Bogolubov method assumes.

The two-dimensional theory, in contrast, began to receive attention
only much later. The first derivation of the correct asymptotic formula was,
to our knowledge, done by Schick(3) for a gas of hard discs:

e(\)&4?+\ |ln(\a2)|&1 (1.3)

This was accomplished by an infinite summation of ``perturbation
series'' diagrams. Subsequently, a corrected modification of ref. 3 was given
in ref. 4. Positive temperature extensions were given in refs. 5 and 6. All this
work involved an analysis in momentum space��as was the case for (1.1),
with the exception of a method due to one of us that works directly in
configuration space.(7) Ovchinnikov(8) derived (1.3) by using, basically, the
method in ref. 7. Again, these derivations require several unproven assump-
tions and are not rigorous.
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One of the intriguing facts about (1.3) is that the energy for N par-
ticles is not equal to N(N&1)�2 times the energy for two particles in the
low density limit��as is the case in three dimensions. The latter quantity,
E0(2, L), is, asymptotically for large L, equal to 8?+L&2[ln(L2�a2)]&1.
Thus, if the N(N&1)�2 rule were to apply, (1.3) would have to be replaced
by the much smaller quantity 4?+\[ln(L2�a2)]&1. In other words, L, which
tends to � in the thermodynamic limit, has to be replaced by the mean
particle separation, \&1�2 in the logarithmic factor. Various poetic formula-
tions of this curious fact have been given, but the fact remains that the non-
linearity is something that does not occur in more than two-dimensions
and its precise nature is hardly obvious, physically. This anomaly is the
main reason that the present investigation is not a trivial extension of ref. 1.

We will prove (1.3) for nonnegative, finite range two-body potentials
by finding upper and lower bounds of the correct form. The restriction to
finite range can be relaxed somewhat, as was done in ref. 9, but the restriction
to nonnegative v cannot be removed in the current state of our methodology.
The upper bounds will have relative remainder terms O( |ln(\a2)|&1) while
the lower bound will have remainder O( |ln(\a2)| &1�5). It is claimed in ref. 4
that the relative error for a hard core gas is negative and O(ln |ln(\a2)|
|ln(\a2)| &1), which is consistent with our bounds.

In the next section we shall give the upper bound (following Dyson's
analysis for the three-dimensional hard core gas(10)). Then we shall recall
our method in ref. 1 for the lower bound and show how it has to be modified.
An important point concerns the definition of the scattering length in two
dimensions (which will be discussed in detail in Appendix A) and how
``Dyson's Lemma(10, 1)'' has to be modified accordingly (Appendix B).

An obvious extension of the present work is the case of 2D bosons in
a trap and this will be the subject of a forthcoming paper. Just as the
passage from 3D to 2D for the homogeneous case presents some non-tri-
vial issues that have to be resolved, so the correct generalization of the
Gross�Pitaevskii equation(11) to the 2D dilute trapped gas presents some
additional complications.

We thank P. Kevrekidis for drawing our attention to this problem.

2. UPPER BOUND FOR THE GROUND STATE ENERGY

We begin with the well known definition of the Hamiltonian under
discussion:

H (N )=&+ :
N

i=1

{2
i + :

i< j

v( |xi&xj | ) (2.1)
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We assume that v(r)�0 and v(r)=0 if r>R0 , for some R0<�. The
Hamiltonian (2.1) acts on totally symmetric, square integrable wave func-
tions of (x1 ,..., xN) with xi # R2. Its ground state energy in a box (rectangle,
actually) of side length L is

E0(N, L)=inf
9

(9, H (N )9 )
(9, 9 )

(2.2)

where the infimum is over all wave functions 9 satisfying appropriate con-
ditions on the boundary of the box. For the upper bound it is natural to
use Dirichlet boundary conditions, which gives the largest energy, but for
the actual calculations it is more convenient to use periodic boundary con-
ditions and a periodic extension of the interaction potential. This can only
raise the energy since v�0. Localization of the wave functions on the
length scale L to obtain Dirichlet boundary conditions costs an energy
t(const.) L&2 per particle, so in the thermodynamic limit our upper
bound is also a valid upper bound for Dirichlet boundary conditions. For
the lower bound, on the other hand, we shall use Neumann boundary con-
ditions, which yields the smallest energy.

Following ref. 10 we make a variational ansatz for 9 of the following
form:

9(x1 ,..., xN)= `
N

i=2

f (ti (x1 ,..., x i )) (2.3)

where ti=min[ |xi&x j |, 1� j�i&1] is the distance of xi to its nearest
neighbor among the points x1 ,..., xi&1 and f is a nondecreasing function of
t�0 with values between zero and 1.

We wish to calculate (9, H (N )9 )�(9, 9 ). Dyson (10) carried out this
calculation for the hard core case, namely when f (r)=0 for r<the core
radius. His formula has been generalized in ref. 9 in two directions: One is
the inclusion of an external potential (which we do not need here) and the
other (which we do need) is the extension to a non-hard core potential v.
We refer to ref. 9 for details. The result involves the following three
integrals

I=2? |
�

0
(1& f (r)2) r dr (2.4)

J=2? |
�

0
( | f $(r)| 2+ 1

2v(r) | f (r)| 2) r dr (2.5)

K=2? |
�

0
f (r) f $(r) r dr (2.6)
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In terms of these integrals the bound on the energy is

(9, H (N )9 )�(9, 9 )�N \ \J
1&\I

+
2
3

(\K )2

(1&\I )2+ (2.7)

The form of this bound is the same as in ref. 10. Compared to Eq. (3.29)
in ref. 9 there is a factor (1&\I )&1 in the first term in place of (1&\I )&2.
This can be traced to the use of the Cauchy�Schwarz inequality in Eq. (3.19)
in ref. 9 which is not necessary in the case of the homogeneous system treated
here.

The next step is to make a choice for f, and this will involve the scat-
tering length a and a variational parameter b. First, we have to define the
scattering length.

Consider the Schro� dinger equation

&+2,0+ 1
2v,0=0 (2.8)

We do not require ,0 to be bounded. As shown in Appendix A, up to an
overall factor there is a unique, nonnegative, spherically symmetric ,0(x)=
f0( |x| ) that satisfies (2.8) provided the Schro� dinger operator &+2+ 1

2 v(r)
in L2(R2) has no bound states. For r>R0 , f0 necessarily has the form
(since ,0 is a harmonic function outside the range of v)

f0(r)=(const.) ln(r�a) (2.9)

The length a is called the scattering length. Note that it depends on both
+ and on v. In the case that v is nonnegative, f0 is necessarily a monotoni-
cally increasing function of r.

We now define our variational f to be

f (r)={ f0(r)� f0(b)
1

for 0�r�b
for r>b

(2.10)

with some b>R0>a to be chosen in an optimal way. By Appendix A we
have that f satisfies f $�0 and 0� f�1, for all b. Moreover,

f (r)�{ln(r�a)�ln(b�a)
0

for a�r�b
for r<a

(2.11)
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Using this information one computes

I�?a2+2? |
b

a \1&
[ln(r�a)]2

[ln(b�a)]2+ r dr

=
?b2

ln(b�a)
(1+O([ln(b�a)]&1)) (2.12)

J=2?[ f (r) f $(r) r]b
0=

2?
ln(b�a)

(2.13)

K=? | ( f (r)2)$ r dr=?b&? | f (r)2 dr

�?b&? |
b

a

[ln(r�a)]2

[ln(b�a)]2 dr=
2?b

ln(b�a)
(1+O([ln(b�a)]&1)) (2.14)

Inserted in (2.7) this leads to the upper bound

E0(N, L)�N�
2?\

ln(b�a)&?\b2 (1+O([ln(b�a)]&1)) (2.15)

The minimum over b of the leading term is obtained for b=(2?\)&1�2.
Inserting this in (2.15) we thus obtain

Theorem 2.1 (Upper Bound). The ground state energy with
periodic boundary conditions satisfies

E0(N, L)�N�
4?\

|ln(\a2)|
(1+O(|ln(\a2)|&1)) (2.16)

Dirichlet boundary conditions may introduce an additional relative
error, but as already noted it is at most 2E0 �N B L&2.

3. LOWER BOUND TO THE GROUND STATE ENERGY

The method of ref. 1 for obtaining a lower bound to E0(N, L) involves
the following steps:

1. A generalization of a lemma due to Dyson(10) that allows the
replacement of the interaction potential v by a ``soft'' potential U at the cost
of sacrificing kinetic energy.

514 Lieb and Yngvason



2. Division of the large box of side length L into small boxes of side
length l, which is kept fixed as L � �, and a corresponding lowering of
the energy by the use of Neumann boundary conditions on each box. It is
necessary to minimize the total energy over all distributions of the particles
among the small boxes; this is accomplished with the aid of the super-
additivity of the ground state energy in each box (i.e., E0(N1+N2 , L)�
E0(N1 , L)+E0(N2 , L), which follows from v�0).

3. The use of a rigorous version of first order perturbation theory,
known as Temple's inequality(12) to estimate from below the energy with
the new potential U in the small boxes.

We follow the same strategy here, but there are several modifications
to be made. The two dimensional version of the generalized Dyson Lemma
is as follows.

Lemma 3.1. Let v(r)�0 and v(r)=0 for r>R0 . Let U(r)�0 be
any function satisfying

|
�

0
U(r) ln(r�a) r dr�1 and U(r)=0 for r<R0 (3.1)

Let B/R2 be star-shaped with respect to 0. Then, for all functions
, # H 1(B),

|
B

+ |{,(x)|2+ 1
2v(r) |,(x)| 2 d 2x�+ |

B

U(r) |,(x)|2 d 2x (3.2)

A domain B is star-shaped with respect to a point p if the line segment
[ p, x]/B whenever x # B. A convex domain is star-shaped with respect
to any point in it (and conversely). The three-dimensional version of the
lemma replaces (3.1) with ��

0 U(r) r2 dr�a. The proof is given in Appendix B.
As in ref. 1, Lemma 3.1 can be used to bound the many body

Hamiltonian H (N ) from below, as follows:

Corollary 3.1. For any U as in Lemma 3.1 and any 0<=<1

H (N )�=T (N )+(1&=) +W (3.3)

with T (N )=&+ �N
i=1 2i and

W(x1 ,..., xN)= :
N

i=1

U( min
j, j{i

|xi&xj | ) (3.4)
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For U we choose the following functions, parameterized by R>R0 :

UR(r)={&(R)&1

0
for R0<r<R
otherwise

(3.5)

with &(R) chosen so that

|
R

R0

UR(r) ln(r�a) r dr=1 (3.6)

for all R>R0 , i.e.,

&(R)=|
R

R0

ln(r�a) r dr

= 1
4[R2(ln(R2�a2)&1)&R2

0(ln(R2
0 �a2)&1)] (3.7)

The nearest neighbor interaction (3.4) corresponding to UR will be denoted WR .
As in ref. 1 we shall need estimates on the expectation value, (WR) 0 ,

of WR in the ground state of =T (N ) of (3.3) with Neumann boundary
conditions.

This is just the average value of WR in a hypercube in R2N. Besides the
normalization factor &(R), the computation involves the volume (area) of
the support of UR , which is

A(R)=?(R2&R2
0) (3.8)

In contrast to the three-dimensional situation the normalization factor
&(R) is not just a constant (R independent) multiple of A(R); the factor
ln(r�a) in (3.1) accounts for the more complicated expressions in the two-
dimensional case. Taking into account that UR is proportional to the
characteristic function of a disc of radius R with a hole of radius R0 , the
following inequalities for n particles in a box of side length l are obtained
by the same geometric reasoning as in ref. 1:

(WR) 0 �
n

&(R) \1&
2R
l +

2

[1&(1&Q) (n&1)] (3.9)

(WR) 0�
n

&(R)
[1&(1&Q) (n&1)] (3.10)

with

Q=A(R)�l2 (3.11)
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being the relative volume occupied by the support of the potential UR .
Since U 2

R=&(R)&1UR we also have

(W 2
R) 0�

n
&(R)

(WR) 0 (3.12)

As in ref. 1 we estimate [1&(1&Q) (n&1)] by

(n&1) Q�[1&(1&Q) (n&1)]�
(n&1) Q

1+(n&1) Q
(3.13)

This gives

(WR) 0 �
n(n&1)

&(R)
} \1&

2R
l +

2 Q
1+(n&1) Q

(3.14)

(WR) 0�
n(n&1)

&(R)
} Q (3.15)

From Temple's inequality (see refs. 1, 9) we obtain the estimate

E0(n, l)�(1&=)(WR)0 \1&
+((W 2

R) 0&(WR) 2
0)

(WR) 0 (E (0)
1 &+(WR)0)+ (3.16)

where

E (0)
1 =

=+
l2 (3.17)

is the energy of the lowest excited state of =T (n). This estimate is valid for
E (0)

1 �+>(WR) 0 , i.e., it is important that l is not too big.
Putting (3.14) and (3.16) together we obtain the estimate

E0(n, l)�
n(n&1)

l2

A(R)
&(R)

K(n) (3.18)

with

K(n)=(1&=) }
(1&2R�l)2

1+(n&1) Q
} \1&

n
(=&(R)�l2)&n(n&1) Q+ (3.19)

Note that Q depends on l and R, and K depends on l, R and = besides n.
We have here dropped the term (WR) 2

0 in the numerator in (3.16), which
is appropriate for the purpose of a lower bound.
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We note that K is monotonically decreasing in n, so for a given n we
may replace K(n) by K( p) provided p�n. As explained in ref. 1 convexity
of n [ n(n&1) together with superadditivity of E0(n, l) in n leads, for
p=4\l2, to an estimate for the energy of N particles in the large box when
the side length L is an integer multiple of l:

E0(N, L)�N�
\A(R)
&(R) \1&

1
\l2+ K(4\l2) (3.20)

with \=N�L3.
Let us now look at the conditions on the parameters =, R and l that

have to be met in order to obtain a lower bound with the same leading
term as the upper bound (2.15).

From (3.7) we have

A(R)
&(R)

=
4?

(ln(R2�a2)&1)
(1&O((R2

0�R2) ln(R�R0))) (3.21)

We thus see that as long as a<R<\&1�2 the logarithmic factor in the
denominator in (3.20) has the right form for a lower bound. Moreover, for
Temple's inequality the denominator in the second factor in (3.19) must be
positive. With n=4\l2 and &(R)�(const.) R2 ln(R2�a2) for R>>R0 , this
condition amounts to

(const.) = ln(R2�a2)�l2>\2l4 (3.22)

The relative error terms in (3.20) that have to be <<1 are

=,
1

\l2 ,
R
l

, \R2,
\l4

=R2 ln(R2�a2)
(3.23)

We now choose

=t |ln(\a2)| &1�5, lt\&1�2 |ln(\a2)|1�10, Rt\&1�2 |ln(\a2)| &1�10

(3.24)

Condition (3.22) is satisfied since the left side is >(const.) |ln(\a2)|3�5

and the right side is t|ln(\a2)|2�5. The first three error terms in (3.23) are all
of the same order, |ln(\a2)|&1�5, the last is t |ln(\a2)| &1�5 (ln |ln(\a2)| )&1.
With these choices, (3.20) thus leads to the following:

Theorem 3.1 (Lower Bound). For all N and L large enough
such that L>(const.) \&1�2 |ln(\a2)|1�10 and N>(const.) |ln(\a2)|1�5 with
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\=N�L2, the ground state energy with Neumann boundary condition satisfies

E0(N, L)�N�
4?+\

|ln(\a2)|
(1&O(|ln(\a2)|&1�5)) (3.25)

In combination with the upper bound of Theorem 2.1 this also proves

Theorem 3.2 (Energy at Low Density in the Thermodynamic
Limit).

lim
\a2 � 0

e0(\)
4?+\ |ln(\a2)| &1=1 (3.26)

where e0(\)=limN � � E0(N, \&1�2N 1�2)�N. This holds irrespective of boundary
conditions.

Remarks. 1. It follows from the remark at the end of Appendix A
that Theorem 3.2 is also valid for an infinite range potential v provided that
v�0 and that for some R we have ��

R v(r) r dr<�.

2. As in refs. 1, 9 we could derive explicit bounds for the error term
in (3.25), but there is little reason to belabor this point.

APPENDIX A. DEFINITION AND PROPERTIES OF
SCATTERING LENGTH

In this appendix we shall define and derive the scattering length and
some of its properties. The reader is referred to ref. 13, especially Chaps. 9
and 11, for many of the concepts and facts we shall use here. While we
are interested in two dimensions, much of the following is valid in all
dimensions.

We start with a potential 1
2v(x) that depends only on the radius,

r=|x|, with x # Rn. For simplicity, we assume that v has finite range; this
condition can easily be relaxed, but we shall not do so here, except for a
remark at the end that shows how to extend the concepts to infinite range,
nonnegative potentials. Thus, we assume that

v(r)=0 for r>R0 (A.1)
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We decompose v into its positive and negative parts, v=v+&v& , with v+ ,
v&�0, and assume the following for v& only (with =>0):

L1(R1) for n=1

v& # {L1+=(R2) for n=2 (A.2)

Ln�2(Rn) for n�3

In fact, v can even be a finite, spherically symmetric measure, e.g., a sum
of delta functions.

We also make the important assumption that 1
2v(x) has no negative

energy bound states in L2(Rn), which is to say we assume that for all
, # H 1(Rn) (the space of L2 functions with L2 derivatives)

|
R n

+ |{,(x)| 2+ 1
2v(x) |,(x)|2 d nx�0 (A.3)

Theorem A.1. Let R>R0 and let BR/Rn denote the ball
[x : 0<|x|<R] and SR the sphere [x : |x|=R]. For f # H1(BR) we set

ER[,]=|
BR

+ |{,(x)| 2+ 1
2v(x) |,(x)| 2 d nx (A.4)

Then, in the subclass of functions such that ,(x)=1 for all x # SR , there is
a unique function ,0 that minimizes ER[,]. This function is nonnegative and
spherically symmetric, i.e.,

,0(x)= f0( |x| ) (A.5)

with a nonnegative function f0 on the interval (0, R], and it satisfies the
equation

&+ 2,0(x)+ 1
2v(x) ,0(x)=0 (A.6)

in the sense of distributions on BR , with boundary condition f0(R)=1.
For R0<r<R

(r&a)�(R&a) for n=1

f0(r)= f asymp
0 (r)#{ln(r�a)�ln(R�a) for n=2 (A.7)

(1&ar2&n)�(1&aR2&n) for n�3

for some number a called the scattering length.
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The minimum value of ER[,] is

2+�(R&a) for n=1

E={2?+�ln(R�a) for n=2 (A.8)

2?n�2+a�[1 (n�2)(1&aR2&n)] for n�3

Remarks. 1. Given that the minimizer is spherically symmetric for
every R, it is then easy to see that the R dependence is trivial. There is
really one function, F0 , defined on all of the positive half axis, such that
f0(r)=F0(r)�F0(R). That is why we did not bother to indicate the explicit
dependence of f0 on R. The reason is a simple one: If R� >R, take the mini-
mizer f� 0 for R� and replace its values for r<R by f0(r) f� 0(R), where f0 is the
minimizer for the BR problem. This substitution cannot increase ER� .

Thus, by uniqueness, we must have that f� 0(r)= f0(r) f� 0(R) for r�R.

2. From (A.7) we then see that f asymp
0 (r)�0 for all r>R0 , which

implies that a�R0 for n�3 and a�Rn&2
0 for n>3.

3. According to our definition (A.7), a has the dimension of a length
only when n�3.

4. The variational principle (A.4), (A.8) allows us to discuss the
connection between the scattering length and � v. We recall Bogolubov's
perturbation theory, (2) which says that to leading order in the density \,
the energy per particle of a Bose gas is e0(\)t

1
2 \ � v, whereas the correct

formula in two-dimensions is 4?+\ |ln(\a2)| &1. The Bogolubov formula is
an upper bound (for all \) since it is the expectation value of H (N ) in the
non-interacting ground state 9#1. Thus, we must have 1

2 � v�4?+ |ln(\a2)|&1

when \a2<<1, which suggests that

|
R 2

v�
4?+

ln(R0 �a)
(A.9)

Indeed, the truth of (A.9) can be verified by using the function ,(x)#1
as a trial function in (A.4). Then, using (A.8), 1

2 � v�E=2?+�ln(R�a) for all
R�R0 , which proves (A.9). As a � 0, (A.9) becomes an equality, however,
in the sense that (�R2 v) ln(R0�a) � 4?+.

In the same way, we can derive the inequality of Spruch and Rosenberg(14)

for dimension 3 or more:

|
R n

v�
4?n�2+a
1 (n�2)

(A.10)

(Here, we take the limit R � � in (A.8)).
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In one-dimension we obtain (with R=R0)

|
R

v�
4+

R0&a
(A.11)

Proof of Theorem A.1. Given any , # H1 we can replace it by the
square root of the spherical average of |,|2. This preserves the boundary
condition at |x|=R, while the v term in (A.4) is unchanged. It also lowers
the gradient term in (A.4) because the map \ [ �({ - \)2 is convex.(13)

Indeed, there is a strict decrease unless , is already spherically symmetric
and nonnegative.

Thus, without loss of generality, we may consider only nonnegative,
spherically symmetric functions. We may also assume that in the annular
region A=[x : R0�|x|�R] there is some a such that (A.7) is true
because these are the only spherically symmetric, harmonic functions in A.
If we substitute for , the harmonic function in A that agrees with , at
|x|=R0 and |x|=1 we will lower ER unless , is already harmonic in A.
(We allow the possibility a=0 for n�2, meaning that ,=constant.)

Next, we note that ER[,] is bounded below. If it were not bounded
then (with R fixed) we could find a sequence , j such that ER[, j ] � &�.
However, if h is a smooth function on R+ with h(r)=1 for r<R+1 and
h(r)=0 for r>2R+1 then the function ,� j (x)=, j (x) for |x|�R and
,� j (x)=h( |x| ) for |x|>R is a legitimate variational function for the L2(Rn)
problem in (A.3). It is easy to see that ER[,� j]�ER[, j]+(const.) Rn&2,
and this contradicts (A.3) (recall that R is fixed).

Now we take a minimizing sequence , j for ER and corresponding ,� j

as above. By the assumptions on v& we can see that the kinetic energy
T j=� |{, j|2 and � |, j|2 are bounded. We can then find a subsequence of
the ,� j that converges weakly in H 1 to some spherically symmetric ,� 0(x)=
f� 0( |x| ). Correspondingly, , j (x) converges weakly in H1(BR) to ,0(x)=
f0( |x| ). The important point is that the term &� v& |, j|2 is weakly con-
tinuous while the term � v+ |, j| 2 is weakly lower continuous.(13) We also
note that f0(R)=1 since the functions ,� j are identically equal to 1 for
R<|x|<R+1 and the limit ,� 0 is continuous away from the origin since
it is spherically symmetric and in H1.

Thus, the limit function ,0 is a minimizer for E[,] under the condi-
tion ,=1 on SR . Since it is a minimizer, it must be harmonic in A, so
(A.7) is true. Eq. (A.6) is standard and is obtained by replacing ,0 by
,0+$�, where � is any infinitely differentiable function that is zero for
|x|�R. The first variation in $ gives (A.6).

Equation (A.8) is obtained by using integration by parts to compute
ER[,0].
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The uniqueness of the minimizer can be proved in two ways. One way
is to note that if ,0{�0 are two minimizers then, by the convexity noted
above, ER[- ,2

0+�2
0 ]<ER[,0]+ER[�0]. The second way is to notice that

all minimizers satisfy (A.6), which is a linear, ordinary differential equation
for f0 on (0, R) since all minimizers are spherically symmetric, as we noted.
But the solution of such equations, given the value at the end points, is
unique. K

We thus see that if the Schro� dinger operator on Rn with potential
1
2v(x) has no negative energy bound state then the scattering length in
(A.7) is well defined by a variational principle. Our next task is to find
some properties of the minimizer ,0 . For this purpose we shall henceforth
assume that v is nonnegative, which guarantees (A.3), of course.

Lemma A.1. If v is nonnegative then for all 0<r�R the minimizer
,0(x)= f0( |x| ) satisfies

(A)

f0(r)� f asymp
0 (r) (A.12)

where f asymp
0 is given in (A.7)

(B) f0(r) is a monotonically nondecreasing function of r.

(C) If v(r)�v~ (r)�0 for all r then the corresponding minimizers
satisfy f0(r)� f� 0(r) for all r<R. Hence, a>a~ �0.

Proof. Let us define f asymp
0 (r) for all 0<r<� by (A.7), and let us

extend f0(r) to all 0<r<� by setting f0(r)= f asymp
0 (r) when r�R.

To prove (A) note that &2,0=&1
2v,0 , which implies that ,0 is

subharmonic (we use v�0 and ,0�0, by Theorem A.1). Set h=(r)=
f0(r)&(1+=) f asymp

0 (r) with =>0 and small. Obviously, x [ h=( |x| ) is sub-
harmonic on the open set [x: 0<|x|<�] because f asymp

0 ( |x| ) is harmonic
there. Clearly, h= � &� as r � � and h=(R)=&=. Suppose that (A.12)
is false at some radius \<R and that h0(\)=&c<0. In the annulus
\<r<�, h=(r) has its maximum on the boundary, i.e., either at \ or at �
(since h( |x| ) is subharmonic in x). By choosing = sufficiently small and
positive we can have that h=(\)< &2= and this contradicts the fact that the
maximum (which is at least &=) is on the boundary.

(B) is proved by noting (by subharmonicity again) that the maximum
of f0 in (0, r) occurs on the boundary, i.e., f0(r)� f0(r$) for any r$<r.

(C) is proved by studying the function g= f0& f� 0 . Since f0 and f� 0 are
continuous, the falsity of (C) implies the existence some open subset,
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0/BR on which g( |x| )>0. On 0 we have that g( |x| ) is subharmonic
(because vf0>v~ f� 0). Hence, its maximum occurs on the boundary, but g=0
there. This contradicts g( |x| )>0 on 0. K

Remark About Infinite Range Potentials. If v(r) is infinite
range and non-negative it is easy to extend the definition of the scattering
length under the assumptions:

(1) v(r)�0 for all r and

(2) For some R1 we have ��
R1

v(r) rn&1 dr<�.

If we cut off the potential at some point R0>R1 (i.e., set v(r)=0 for
r>R0) then the scattering length is well defined but it will depend on R0 ,
of course. Denote it by a(R0). By part C of Lemma (A.1), a(R0) is an
increasing function of R0 . However, the bounds (A.9) and (A.10) and
assumption (2) above guarantee that a(R0) is bounded above. (More
precisely, we need a simple modification of (A.9) and (A.10) to the poten-
tial v(r)#� for r�R1 and v(r)#v(r) for r>R1 . This is accomplished by
replacing the ``trial function'' f (x)=1 by a smooth radial function that
equals 0 for r<R1 and equals 1 for r>R2 for some R2>R1 .) Thus, a is
well defined by

a= lim
R0 � �

a(R0) (A.13)

APPENDIX B. PROOF OF DYSON'S LEMMA 3.1 IN
TWO DIMENSIONS

Proof. In polar coordinates, r, %, one has |{,|2�|�,��r|2. Therefore,
it suffices to prove that for each angle % # [0, 2?), and with ,(r, %) denoted
simply by f (r),

|
R(%)

0 \+ |�f (r)��r|2+ 1
2v(r) | f (r)|2+ r dr�+ |

R(%)

0
U(r) | f (r)|2 r dr (B.1)

where R(%) denotes the distance of the origin to the boundary of B along
the ray %.

If R(%)�R0 then (B.1) is trivial because the right side is zero while the
left side is evidently nonnegative. (Here, v�0 is used.)

If R(%)>R0 for some given value of %, consider the disc D(%)=
[x # R2 : 0�|x|�R(%)] centered at the origin in R2 and of radius R(%).
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Our function f defines a spherically symmetric function, x [ f ( |x| ) on
D(%), and (B.1) is equivalent to

|
D(%)

+ |{f ( |x| )|2+ 1
2 v(r) | f ( |x| )| 2 d 2x (B.2)

Now choose some R # (R0 , R(%)) and note that the left side of (B.2) is
not smaller than the same quantity with D(%) replaced by the smaller disc
DR=[x # R2 : 0�|x|�R]. (Again, v�0 is used.) According to Appendix A,
Theorem A.1, Eq. (A.8), and linearity in | f |2, this integral over DR is at least
E(R) | f (R)|2. Hence, for every R0<R<R(%),

2? |
R(%)

0 \+ |�f (r)��r|2+ 1
2v(r) | f (r)| 2+ r dr�E(R) | f (R)|2 (B.3)

The proof is completed by noting that E(R)=2?+�ln(R�a), by multiplying
both sides of (B.3) by U(R) Rln(R�a) and, finally, integrating with respect
to R from R0 to R(%). K
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